Drug-Induced Reactivation of Apoptosis Abrogates HIV-1 Infection
نویسندگان
چکیده
HIV-1 blocks apoptosis, programmed cell death, an innate defense of cells against viral invasion. However, apoptosis can be selectively reactivated in HIV-infected cells by chemical agents that interfere with HIV-1 gene expression. We studied two globally used medicines, the topical antifungal ciclopirox and the iron chelator deferiprone, for their effect on apoptosis in HIV-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates. Both medicines activated apoptosis preferentially in HIV-infected cells, suggesting that the drugs mediate escape from the viral suppression of defensive apoptosis. In infected H9 cells, ciclopirox and deferiprone enhanced mitochondrial membrane depolarization, initiating the intrinsic pathway of apoptosis to execution, as evidenced by caspase-3 activation, poly(ADP-ribose) polymerase proteolysis, DNA degradation, and apoptotic cell morphology. In isolate-infected peripheral blood mononuclear cells, ciclopirox collapsed HIV-1 production to the limit of viral protein and RNA detection. Despite prolonged monotherapy, ciclopirox did not elicit breakthrough. No viral re-emergence was observed even 12 weeks after drug cessation, suggesting elimination of the proviral reservoir. Tests in mice predictive for cytotoxicity to human epithelia did not detect tissue damage or activation of apoptosis at a ciclopirox concentration that exceeded by orders of magnitude the concentration causing death of infected cells. We infer that ciclopirox and deferiprone act via therapeutic reclamation of apoptotic proficiency (TRAP) in HIV-infected cells and trigger their preferential elimination. Perturbations in viral protein expression suggest that the antiretroviral activity of both drugs stems from their ability to inhibit hydroxylation of cellular proteins essential for apoptosis and for viral infection, exemplified by eIF5A. Our findings identify ciclopirox and deferiprone as prototypes of selectively cytocidal antivirals that eliminate viral infection by destroying infected cells. A drug-based drug discovery program, based on these compounds, is warranted to determine the potential of such agents in clinical trials of HIV-infected patients.
منابع مشابه
Kinase control prevents HIV-1 reactivation in spite of high levels of induced NF-κB activity.
Despite its clinical importance, the molecular biology of HIV-1 latency control is at best partially understood, and the literature remains conflicting. The most recent description that latent HIV-1 is integrated into actively expressed host genes has further confounded the situation. This lack of molecular understanding complicates our efforts to identify therapeutic compounds or strategies th...
متن کاملPreferential apoptosis of HIV-1-specific CD4+ T cells.
In contrast to other viral infections such as CMV, circulating frequencies of HIV-1-specific CD4+ T cells in peripheral blood are quantitatively diminished in the majority of HIV-1-infected individuals. One mechanism for this quantitative defect is preferential infection of HIV-1-specific CD4+ T cells, although <10% of HIV-1-specific CD4+ T cells are infected. Apoptosis has been proposed as an ...
متن کاملSymptomatic Reactivation of HSV Infection Correlates with Decreased Serum Levels of TNF-α
Background: Herpes simplex viruses (HSV) are human pathogens that establish lytic and latent infections. Reactivation from latency occurs intermittently, which represents a life-long source for recurrent infection. The role of immune factors in the control of recurrent symptomatic HSV lesions is complex and the exact role of cytokines remains unclear. Objective: To assess the levels of tumor ne...
متن کاملUnique characteristics of histone deacetylase inhibitors in reactivation of latent HIV-1 in Bcl-2-transduced primary resting CD4+ T cells.
OBJECTIVES The latent reservoir for HIV-1 in resting memory CD4+ T cells is a major barrier to eradication. In vitro models involving transformed cell lines have been used to search for small molecules that reactivate latent HIV-1. Histone deacetylase (HDAC) inhibitors can reverse HIV-1 latent infection. Most studies on HDAC inhibitors have been performed in cell line models that differ in impo...
متن کاملLEDGIN-mediated Inhibition of Integrase–LEDGF/p75 Interaction Reduces Reactivation of Residual Latent HIV
Persistence of latent, replication-competent Human Immunodeficiency Virus type 1 (HIV-1) provirus is the main impediment towards a cure for HIV/AIDS (Acquired Immune Deficiency Syndrome). Therefore, different therapeutic strategies to eliminate the viral reservoirs are currently being explored. We here propose a novel strategy to reduce the replicating HIV reservoir during primary HIV infection...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013